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Editor’s Note: For 2021, NASF-AESF Foundation Research Board has selected a project on addressing the problem of PFAS 
and related chemicals in plating wastewater streams.  This report covers the second quarter of work (April-June 2021).  
 
Introduction  
 
This project started in January 2021 with the goal of developing applicable electrochemical approaches to remove per- and 
polyfluoroalkyl substances (PFASs) present in plating wastewaters, including electrooxidation (EO) and electrocoagulation (EC).  
This project includes three research tasks that are designed to investigate EC, EO and EC-EO treatment train, respectively, 
designed to probe three hypotheses specified follows: 
    

1) EC generates amorphous metal hydroxide flocs that can effectively adsorb PFASs in plating wastewater, which, through 
an appropriate treatment, can release PFASs into a concentrated solution. 

2) EO enabled by a Magnéli phase Ti4O7 anode can be used to effectively destruct PFASs in plating wastewater. 
3) The electrochemical treatment train comprised of EC and EO by Ti4O7 anode can remove and degrade PFASs in plating 

wastewater more efficiently than either process operated individually. 
 
This report describes part of our continuing effort in Task 1, by evaluating the isotherm-like sorption behavior of the PFASs on 
EC-generated zinc hydroxide flocs.   
 
The electrocoagulation (EC) process has shown potential to remove PFASs from water by some recent studies.1,2,3.  EC involves 
the dissolution of charged cations (e.g., Zn2+, Al3+, Fe3+) formed at the sacrificial anode with simultaneous formation of 
monomeric and polymeric hydroxyl complex species, which can strongly sorb certain pollutants and remove them from 
contaminated water.4  Lin, et al.1 evaluated PFAS removal using various sacrificial anodes, including aluminum, iron, zinc and 
magnesium, and found that PFASs can be quickly adsorbed on zinc hydroxide flocs, generated in situ during EC with zinc 
anode, mainly via hydrophobic interaction.  Here in this report, we systematically examined the adsorption behavior of PFAS on 
the flocs generated during EC with a sacrificial zinc anode.  
 
Experimental 
 
The setup of the EC reactor and the procedure of EC experiments have been described in detail in our first report of this project.  
In order to further evaluate the adsorption behavior of PFASs on the flocs generated from the zinc anode during EC, a series of 
EC experiments were conducted using PFAS solution comprised of ten PFASs, including (1) perfluorononanoic acid (PFNA), (2) 
perfluorooctanoic acid (PFOA), (3) perfluoroheptanoic acid (PFHpA), (4) perfluorohexanoic acid (PFHxA), (5) 
perfluorooctanesulfonic acid (PFOS), (6) perfluorohexanesulfonic acid (PFHxS), (7) perfluorobutanesulfonic acid (PFBS), (8) 
fluorotelomer sulfonic acid 8:2 (8:2 FtS), (9) fluorotelomer sulfonic acid 6:2 (6:2 FtS) and (10) fluorotelomer sulfonic acid 4:2 (4:2 
FtS).  The Initial concentrations were at different levels ranging from 0.001 to 0.1 μm (i.e., 0.001, 0.002, 0.005, 0.01, 0.02, 0.05 
and 0.1 μm), and the reaction time was 120 min using a low current density of 0.3 mA/cm2 to prevent foaming.  The supernatant 
was collected from each test cell and analyzed for the ten PFASs.   Floc was collected and weighed after freeze drying once 
reactions were terminated.  The data were used to evaluate the sorption capacity of each PFASs constituents and the sorbate-
sorbent interactions.  The PFASs sorption data were best fitted using the Langmuir isotherm model, Equation 1.  
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where Qe is the amount (μmol/g) of PFASs adsorbed at equilibrium; Ce is the equilibrium PFASs concentration (μM) in the 
solution; Qm represents the adsorption capacity; and kL is the adsorption affinity constant. 
 
Results and discussion 
 
The sorption data of each PFAS obtained by data fitting are shown in Fig. 1(A,B,C) and Table 1.  As seen, the adsorption 
capacity of the ten PFASs followed the order PFOS > PFNA > 8:2 FtS > PFOA > PFHxS > 6:2 FtS > Fluorotelomer sulfonic acid 
4:2 (4:2 FtS) > Perfluoroheptanoic acid (PFHpA) > Perfluorohexanoic acid (PFHxA) > PFBS.  It is in line with the order of the 
carbon chain length for each category, while, for a similar carbon chain length, is perfluoroalkanesulfonic acids (PFSAs, including 
PFOS, PFHxS, and PFBS) > fluorotelomer sulfonic acids (FTSAs, including 8:2 FtS, 6:2 FtS, and 4:2 FtS) > perfluoroalkyl 
carboxylic acids (PFCAs, including PFNA, PFOA, PFHpA and PFHxA).  PFASs with longer carbon chain length tend to be more 
hydrophobic.  This result confirmed that hydrophobic interaction plays a key role in the sorption capacity of PFASs on the zinc 
hydroxide flocs (Lin, et al. 2015), while charge interactions may also have an impact, as sulfonate head groups tend to have 
higher charge density than carboxylates in PFASs.  According to the adsorption affinity constant (kL) shown in Table 1 (a smaller 
value indicates greater sorption affinity), the sorption affinity of the ten PFASs followed the order PFHxS > PFOS > PFNA > 
PFOA > 6:2 FtS > PFHpA > 8:2 FtS > 4:2 FtS > PFHxA > PFBS.  The order differs somewhat from that for the sorption capacity, 
with the larger molecules (PFNA, 8:2 FtS) shifted down in the order.  It seems that the larger molecules may be disadvantaged in 
terms of sorption affinity, while charge interactions play an important role in the intensity of the sorption interactions. 

 
Figure 1 - (A, B, C) Langmuir sorption isotherm of the ten PFASs on the flocs (C0 = 0.001 - 0.1 μM, current density = 0.3 
mA/cm2, 20 mM Na2SO4, EC time = 120 min); (D) Langmuir sorption isotherm of single 4:2 FtS, PFOA and PFOS on the flocs, 
respectively. (C0 = 0.002 - 5 μM, current density = 0.3 mA/cm2, 20 mM Na2SO4, EC time = 120 min). 



                 NASF/AESF Foundation Research Reports                   
Project R-122 Q2 

 

 Page 3 
 

Table 1 - Parameters obtained by fitting isotherm-like sorption data using Langmuir equation. 

 
 
In order to identify if competitive sorption occurred in the ten PFASs solution, EC experiments were also performed to study the 
Langmuir sorption isotherms of three individual PFASs, including 4:2 FtS, PFOA, and PFOS, on the flocs using the same 
reaction conditions above.  These three PFASs were chosen to represent PFSAs, FTSAs, and PFCAs, respectively.  As shown 
in Fig. 1(D) and Table 1, the sorption capacity of PFOS and PFOA obtained in the individual solutions were much greater than 
those obtained in the mixture solutions, apparently indicative of competitive sorption effects in the solutions containing multiple 
PFASs.  The sorption capacity of 4:2 FtS was, however, similar for the individual and mixture solutions.  This is likely because 
4:2 FtS has weaker affinity on flocs, for which competitive sorption effect may not be evident. 
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